Symbolic Automatic Relations and Their Applications to SMT and CHC Solving

Takumi ShimodaNaoki KobayashiKen SakayoriRyosuke Sato

The University of Tokyo

SMT/CHC on Recursive Data Structures

Reasoning about recursive data structures is a challenge for many solvers

(cf. Z3 [Moura+, 2008], CVC4 [Barrett+, 2011], Spacer [Komuravelli+, 2016], Holce [Champion+, 2020], Eldarica [Hojjat+, 2018])

 $\begin{aligned} \forall i, x, y, X. sorted(x :: X) \land nth(i, y, X) \Rightarrow x \leq y \\ sorted(X) \stackrel{\text{def}}{=} X = [] \lor X = x :: [] \lor X = x :: y :: X' \land x \leq y \land sorted(y :: X') \\ // \text{ the list } X \text{ is sorted in ascending order} \\ nth(i, y, X) \stackrel{\text{def}}{=} i = 0 \land X = y :: X' \lor X = x :: X' \land nth(i - 1, y, X) \\ // \text{ the } i\text{-th element of the list } X \text{ is the integer } x \end{aligned}$

Hard to check the validity

Our Work

- We propose symbolic automatic relations (SARs)
 - Combination of symbolic automata and automatic relations
 - Represent various relations on lists of integers
 - Closed under Boolean operations
- (Incomplete) decision procedure for the satisfiability problem for SAR-formulas
 - Reduction to CHC solving on integers
- Applications to SMT/CHC solving

- Symbolic Automatic Relations (SARs)
 - Combination of Symbolic Automata and Automatic Relations
 - Satisfiability Problem for SAR-Formulas
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Symbolic Automatic Relations (SARs)

5/22

- Combination of symbolic automata [D'Antoni+, 2017] and automatic relations [Blumensath+, 2000]
 - Read inputs in a synchronous manner
 - Have predicates over integers as transition labels
 - Closed under Boolean operations

e.g.) Given the inputs [10,0,10] and [5,5,5], R_0 reads [(10,5), (0,5), (10,5)]

 $\begin{array}{l} R_0(X,Y) \\ \Leftrightarrow X[i] > Y[i] \text{ if } i \text{ is even number and} \\ X[i] < Y[i] \text{ if } i \text{ is odd number} \end{array}$

SAR $R_0(L_0, L_1)$

SAR-Formulas

SAR-Formula $\psi ::= \varphi$ s.t. φ and $\neg \varphi$ are of the form $\exists \tilde{X} \exists \tilde{x}. R(\tilde{T}, \tilde{t})$ | primitive predicate on integers | $\bot \mid \top \mid \psi \lor \psi \mid \psi \land \psi \mid \neg \psi$

nth(i, x, X), which means "the *i*-th element of X is x", can be defined as below and is an SAR-formula

$$nth(i, x, X) \Leftrightarrow \exists Y.R_1(i :: Y, Y, X, x)$$
$$\neg nth(i, x, X) \Leftrightarrow \exists Y.R_2(i :: Y, Y, X, x)$$

Satisfiability Problem for SAR-Formulas

7/22

Given an SAR-formula $\exists \tilde{X} \exists \tilde{x}. R(\tilde{T}, \tilde{t})$, is $\exists \tilde{X} \exists \tilde{x}. R(\tilde{T}, \tilde{t})$ satisfiable?

Undecidable in general

• Various properties on lists can be written as SAR-formulas

$$ath(2,5,X) \xrightarrow{\text{The 2^{nd} element of } X \text{ is 5}} R_1(L_0,L_1,L_2,x) \xrightarrow{R_1(L_0,L_1,L_2,x)} Q \xrightarrow{Q_0} Q \xrightarrow{R_1(L_0,L_1,L_2,x)} Q \xrightarrow{R_1(L_0,L_2,X)} Q \xrightarrow{R_1$$

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
 - Reduction to CHC solving on Integers
- Applications
- Evaluation
- Related Work

Reduction to CHCs on Integers

Satisfiability Problem for SAR-Formulas $\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2::Y,Y,X,5)$ Given an SAR-formula φ , is φ satisfiable? $R_1(L_0, L_1, L_2, x)$ q_0 $l_0 = l_1 + 1$ q_1 sound and complete reduction s.t. φ is satisfiable $\Leftrightarrow \Pi_{\varphi}$ is unsatisfiable **CHC solving on Integers** Constrained Horn Clause Given a set of CHCs Π_{φ} , $q_0(i',j',k') \Leftarrow i' = 2$ is Π_{φ} satisfiable? $q_0(i',j',k') \leftarrow q_0(i,j,k) \land i = j + 1 \land i' = j \land \neg \varphi_{end}$

Solvable in practice for many problems by existing CHC solvers

Intuition of Reduction

CHCs Π_α

10/22

$$\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2::Y,Y,X,5)$$

$$R_{1}(L_{0}, L_{1}, L_{2}, x)$$

$$q_{0}$$

$$l_{0} = l_{1} + 1$$

$$q_{1}$$

$$q_{1}$$

Intuition : $\underline{q}(i, j, k) \Leftrightarrow$ "for some *X* and *Y*, given (2 :: Y, Y, X) as inputs, the SAR R_1 visits *q* reading (i, j, k) as next elements"

$$\begin{split} \underline{q_0}(i',j',k') &\Leftarrow i' = 2\\ \underline{q_0}(i',j',k') &\Leftarrow \underline{q_0}(i,j,k) \land i = j + 1 \land i' = j \land \neg \varphi_{end}\\ \underline{q_1}(i',j',k') &\Leftarrow \underline{q_0}(i,j,k) \land i = 0 \land k = 5 \land i' = j \land \neg \varphi_{end}\\ \underline{q_1}(i',j',k') &\Leftarrow \underline{q_1}(i,j,k) \land i' = j \land \neg \varphi_{end}\\ \bot &\Leftarrow \underline{q_1}(i,j,k) \land \varphi_{end} \end{split}$$

Clauses from Initial States

$$\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2 :: Y, Y, X, 5) \xrightarrow{R_1(L_0, L_1, L_2, x)} \xrightarrow{q_0 = l_1 + 1} \xrightarrow{q_0} q_0$$

$$R_1 \text{ is initially at state } q_0 \text{ with the first element being 2}$$

$$R_1 \text{ is initially at state } q_0 \text{ with the first element being 2}$$

$$\frac{q_0(i', j', k') \in q_0(i, j, k) \land i = j + 1 \land i' = j \land \neg \varphi_{end}}{q_1(i', j', k') \in q_0(i, j, k) \land i = 0 \land k = 5 \land i' = j \land \neg \varphi_{end}}$$

$$\frac{q(i, j, k) \in q_1(i, j, k) \land i' = j \land \neg \varphi_{end}}{1 \in q_1(i, j, k) \land i' = j \land \neg \varphi_{end}}$$

$$\frac{q(i, j, k) \in q_1(i, j, k) \land i' = j \land \neg \varphi_{end}}{1 \in q_1(i, j, k) \land \varphi_{end}}$$

11/22

Clauses from Transitions

$$\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2::Y,Y,X,5)$$

$$(L_0, L_1, L_2, x)$$

$$q_0$$

$$l_0 = l_1 + 1$$

$$q_1$$

$$q_1$$

the transition label

the relation between inputs 2 :: Y and Y

 R_1

There is still an input to read

$$\begin{split} \underline{q_0}(i',j',k') &\Leftarrow i' = 2 \\ \underline{q_0}(i',j',k') &\Leftarrow \underline{q_0}(i,j,k) \land i = j + 1 \land i' = j \land \neg \varphi_{end} \\ \underline{q_1}(i',j',k') &\Leftarrow \underline{q_0}(i,j,k) \land i = 0 \land k = 5 \land i' = j \land \neg \varphi_{end} \\ \underline{q_1}(i',j',k') &\Leftarrow \underline{q_1}(i,j,k) \land i' = j \land \neg \varphi_{end} \\ \bot &\Leftarrow q_1(i,j,k) \land \varphi_{end} \end{split}$$

CHCs Π_{ω}

 $\underline{q}(i, j, k) \Leftrightarrow$ "for some X and Y, given (2 :: Y, Y, X) as inputs, the SAR R₁ visits q reading (i, j, k) as next elements"

Clauses from Final States

 $R_1(L_0, L_1, L_2, x)$ $\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2::Y,Y,X,5)$ \perp is derived if R_1 finishes reading all the inputs at final state q_1 CHCs Π_{ω} $q_0(i',j',k') \Leftarrow i' = 2$ $q_0(i',j',k') \Leftarrow q_0(i,j,k) \land i = j - 1 \land i' = j \land \neg \varphi_{end}$ $q(i, j, k) \Leftrightarrow$ $\underline{q_1}(i',j',k') \Leftarrow \underline{q_0}(i,j,k) \land j = 0 \land k = 5 \land i' = j \land \neg \varphi_{end}$ " for some *X* and *Y*, given (2 :: Y, Y, X) as inputs, $q_1(i',j',k') \Leftarrow q_1(i,j,k) \wedge i' = j \wedge \neg \varphi_{end}$ the SAR R_1 visits q reading (i, j, k) as next elements" $\perp \Leftarrow q_1(i, j, k) \land \varphi_{end}$

13/22

Correctness

14/22

$$\varphi \stackrel{\text{def}}{=} \exists Y.R_1(2::Y,Y,X,5) \xrightarrow{R_1(L_0,L_1,L_2,x)} \xrightarrow{l_0 = l_1 + 1} \xrightarrow{q_1} q_1$$
accepting run of $R_1 \Leftrightarrow$ the derivation of contradiction of Π_{φ}
Given $X = [7,6,5], Y = [1,0],$
 R_1 accepts $(2::Y,Y,X)$ along the path
$$q_0(i',j',k') \leftarrow i' = 2$$

$$q_0(i',j',k') \leftarrow q_0(i,j,k) \land i = j + 1 \land i' = j \land \neg \varphi_{end}$$

$$q_1(i',j',k') \leftarrow q_0(i,j,k) \land i = 0 \land k = 5 \land i' = j \land \neg \varphi_{end}$$

$$q_1(i',j',k') \leftarrow q_1(i,j,k) \land i' = j \land \neg \varphi_{end}$$

$$\downarrow \leftarrow q_1(i,j,k) \land \varphi_{end}$$

$$q_1(i,j,k) \land \varphi_{end}$$

$$R_1(L_0,L_1,L_2,x)$$

$$q_0 = l_1 + 1$$

$$q_0 =$$

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Applications

- SMT solving on recursive data structures
 - Applicable to checking the validity/satisfiability of quantifier-free formulas consisting of predicates belonging to <u>SAR-formulas</u>

Formulas s.t. itself and its negation are of the form $\exists \tilde{X} \exists \tilde{x}. R(\tilde{T}, \tilde{t})$

- CHC solving
 - Reduction from CHC solving on data structures to CHC solving on integers
 - Applicable to teacher part of ICE-based CHC solver

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Application to ICE-based CHC solving
- Evaluation
- Related Work

Implementation

- Implemented a satisfiability solver for SAR-formulas
 - Input:
 - · definitions of predicates as SAR-formulas
 - quantifier-free formulas

e.g.) $nth(i, x, X) \Rightarrow nth(i + 1, x, y :: X)$ // formula whose validity to be checked $nth(i, x, X) \stackrel{\text{def}}{=} \exists Y.R_1(i :: Y, Y, X, x)$ // definitions of predicate nth $\neg nth(i, x, X) \stackrel{\text{def}}{=} \exists Y.R_2(i :: Y, Y, X, x)$ // and its negation $R_1 = \cdots, R_2 = \cdots$ // definitions of SARs

- Backend CHC solvers on integers
 - Spacer [Komuravelli+, 2016]
 - Holce [Champion+, 2020]
 - Eldarica [Hojjat+, 2018]

Evaluation

Benchmark (#Instances)	IsaPlanner (15)	SAR_SMT (60)	CHC (12)	All (87)
Ours-Spacer	8	43	8	59
Ours-Holce	14	55	11	80
Ours-Eldarica	14	59	12	85
Z3 [Moura+, 2008] (rec)	5	32	1	38
Z3 (assert)	7	20	3	30
CVC4 [Barrett+, 2011] (rec)	5	32	3	40
CVC4 (assert)	6	19	3	28

- Count the number of instances solved within 60 seconds
- Our tool solved more instances for three benchmarks

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Related Work

- Decidable theories on arrays [Bradley+,2006] or inductive data types [Barrett+,2007]
 - Decidable fragments of these theories are limited
- CHC Solver based on Tree Automatic Relations [Haudebourg, 2020]
 - Does not deal with data structures of elements from an infinite set
- Fold/unfold transformation [Angelis+, 2020]
 - Removes algebraic data types from CHCs
 - Seems to be related to SARs in some way

Conclusion

- Symbolic automatic relations
 - Combination of symbolic automata and automatic relations
 - Useful for reasoning about recursive data structures
- (Incomplete) decision procedure for the satisfiability problem for SAR-Formulas
 - Reduction to CHC on integers
- Future work
 - Learner's algorithm for ICE-based CHC solver