Symbolic Automatic Relations and Their Applications to SMT and CHC Solving

Takumi Shimoda Naoki Kobayashi Ken Sakayori Ryosuke Sato

The University of Tokyo

SMT/CHC on Recursive Data Structures

- Reasoning about recursive data structures is a challenge for many solvers
(cf. Z3 [Moura+, 2008], CVC4 [Barrett+, 2011], Spacer [Komuravelli+, 2016], Holce [Champion+, 2020], Eldarica [Hojjat+, 2018])

$$
\left.\begin{array}{c}
\forall i, x, y, X . \operatorname{sorted}(x:: X) \wedge n t h(i, y, X) \Rightarrow x \leq y \\
\operatorname{sorted}(X) \stackrel{\text { def }}{=} X=[] \vee X=x::[] \vee X=x:: y:: X^{\prime} \wedge x \leq y \wedge \operatorname{sorted}\left(y:: X^{\prime}\right) \\
\\
\\
\\
\text { nth }(i, y, X) \\
\stackrel{\text { def }}{=} i=0 \wedge X=y:: X^{\prime} \vee X=x:: X^{\prime} \wedge n t h(i-1, y, X) \\
\\
\\
\\
\end{array} / \text { the } i \text { is th element of the list } X \text { is the integer } x\right)
$$

Hard to check the validity

Our Work

- We propose symbolic automatic relations (SARs)
- Combination of symbolic automata and automatic relations
- Represent various relations on lists of integers
- Closed under Boolean operations
- (Incomplete) decision procedure for the satisfiability problem for SAR-formulas
- Reduction to CHC solving on integers
- Applications to SMT/CHC solving

Outline

- Symbolic Automatic Relations (SARs)
- Combination of Symbolic Automata and Automatic Relations
- Satisfiability Problem for SAR-Formulas
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Symbolic Automatic Relations (SARs)

- Combination of symbolic automata [D‘Antoni+, 2017] and automatic relations [Blumensath+, 2000]
- Read inputs in a synchronous manner
- Have predicates over integers as transition labels
- Closed under Boolean operations
$\operatorname{SAR} R_{0}\left(L_{0}, L_{1}\right)$
e.g.) Given the inputs $[10,0,10]$ and $[5,5,5]$, R_{0} reads $[(10,5),(0,5),(10,5)]$

$$
R_{0}(X, Y)
$$

$\Leftrightarrow X[i]>Y[i]$ if i is even number and $X[i]<Y[i]$ if i is odd number

SAR-Formulas

SAR-Formula $\psi::=\quad \varphi$ s.t. φ and $\neg \varphi$ are of the form $\exists \tilde{X} \exists \tilde{x} . R(\tilde{T}, \tilde{t})$ primitive predicate on integers

$$
|\perp| \top|\psi \vee \psi| \psi \wedge \psi \mid \neg \psi
$$

$n t h(i, x, X)$, which means "the i-th element of X is x ", can be defined as below and is an SAR-formula

$$
\begin{aligned}
\operatorname{nth}(i, x, X) & \Leftrightarrow \exists Y \cdot R_{1}(i:: Y, Y, X, x) \\
\operatorname{nth}(i, x, X) & \Leftrightarrow \exists Y \cdot R_{2}(i:: Y, Y, X, x)
\end{aligned}
$$

Satisfiability Problem for SAR-Formulas

Given an SAR-formula $\exists \tilde{X} \exists \tilde{x} . R(\widetilde{T}, \tilde{t})$, is $\exists \tilde{X} \exists \tilde{x} \cdot R(\tilde{T}, \tilde{t})$ satisfiable?

Undecidable in general

- Various properties on lists can be written as SAR-formulas

$$
n t h(2,5, X) \quad \text { The 2nd element of } X \text { is } 5
$$

$$
\exists Y . R_{1}(2:: Y, Y, X, 5)
$$

Outline

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Reduction to CHC solving on Integers
- Applications
- Evaluation
- Related Work

Reduction to CHCs on Integers

Satisfiability Problem for SAR-Formulas

Given an SAR-formula φ, is φ satisfiable?
sound and complete reduction
s.t. φ is satisfiable $\Leftrightarrow \Pi_{\varphi}$ is unsatisfiable

CHC solving on Integers
 Constrained Horn Clause

Given a set of $\mathrm{CHCs} \Pi_{\varphi}$, is Π_{φ} satisfiable?

$$
\begin{aligned}
& \underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow i^{\prime}=2 \\
& \underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=j+1 \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }}
\end{aligned}
$$

Solvable in practice for many problems by existing CHC solvers

Intuition of Reduction

$$
\varphi \stackrel{\text { def }}{=} \exists Y \cdot R_{1}(2:: Y, Y, X, 5)
$$

$\underline{q}(i, j, k) \Leftrightarrow$ "for some X and Y, given (2:: $Y, Y, X)$ as inputs, the SAR R_{1} visits q reading (i, j, k) as next elements"

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { Intuition: } \\
\underline{q}(i, j, k) \Leftrightarrow
\end{array} \quad \text { "for some } X \text { and } Y, \mathrm{~g} \\
& \text { the SAR } R_{1} \text { visits } q \text { re }
\end{aligned} \quad \begin{aligned}
& \mathrm{CHCS} \Pi_{\varphi}
\end{aligned} \underline{\underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow i^{\prime}=2} \begin{aligned}
& \underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=j+1 \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=0 \wedge k=5 \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{1}}(i, j, k) \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \perp \\
& \perp \underline{q_{1}}(i, j, k) \wedge \varphi_{\text {end }}
\end{aligned}
$$

Clauses from Initial States

$$
\varphi \stackrel{\text { def }}{=} \exists Y \cdot R_{1}(2:: Y, Y, X, 5)
$$

$$
R_{1}\left(L_{0}, L_{1}, L_{2}, x\right)
$$

R_{1} is initially at state q_{0} with the first element being 2

$$
\begin{aligned}
& \underline{q}(i, j, k) \Leftrightarrow \\
& \text { " for some } X \text { and } Y, \\
& \quad \text { given }(2:: Y, Y, X) \text { as inputs, } \\
& \text { the SAR } R_{1} \text { visits } q \\
& \quad \text { reading }(i, j, k) \text { as next elements" }
\end{aligned}
$$

Clauses from Transitions

$$
\varphi \stackrel{\text { def }}{=} \exists Y . R_{1}(2:: Y, Y, X, 5)^{R_{1}\left(L_{0}, L_{1}, L_{2}, x\right)}
$$

the transition label
$\mathrm{CHCS} \Pi_{\varphi}$

$$
\begin{aligned}
& \underline{q}(i, j, k) \Leftrightarrow \\
& \text { " for some } X \text { and } Y, \\
& \quad \text { given }(2:: Y, Y, X) \text { as inputs, } \\
& \text { the SAR } R_{1} \text { visits } q \\
& \quad \text { reading }(i, j, k) \text { as next elements" }
\end{aligned}
$$

Clauses from Final States

$$
\varphi \stackrel{\text { def }}{=} \exists Y \cdot R_{1}(2:: Y, Y, X, 5)
$$

$$
R_{1}\left(L_{0}, L_{1}, L_{2}, x\right)
$$

\perp is derived if R_{1} finishes reading all the inputs at final state q_{1}

$$
\begin{aligned}
& q_{0}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow i^{\prime}=2 \\
& \underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=j \not \subset 1 \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{0}}(i, j, k) \wedge j=0 \wedge k=5 \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow \underline{q_{1}}(i, j, k) \wedge i^{\prime}=j \wedge \neg \varphi_{\text {end }} \\
& \perp \Leftarrow \underline{q_{1}}(i, j, k) \wedge \varphi_{\text {end }}
\end{aligned}
$$

Correctness

accepting run of $\boldsymbol{R}_{\mathbf{1}} \Leftrightarrow$ the derivation of contradiction of Π_{φ}	
Given $X=[7,6,5], Y=[1,0]$, R_{1} accepts ($2:: Y, Y, X$) along the path	$\begin{aligned} & \underline{q_{0}}(2,1,7) \Leftarrow \text { clause }(1) \\ & \underline{q_{0}}(1,0,6) \Leftarrow \underline{q_{0}}(2,1,7) \text { and clause }(2) \end{aligned}$
CHCS $q_{0}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) \Leftarrow i^{\prime}=2$$\quad q_{0} \xrightarrow{(2,1,7)} q_{0} \xrightarrow{(1,0,6)} q_{0} \xrightarrow{(0, \ldots 5)} q_{1}$	
$\begin{aligned} \underline{q_{0}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) & \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=j+1 \wedge i^{\prime}=j \wedge \neg \varphi_{e n d} \\ \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) & \Leftarrow \underline{q_{0}}(i, j, k) \wedge i=0 \wedge k=5 \wedge i^{\prime}=j \wedge \neg \varphi_{e n d} \\ \underline{q_{1}}\left(i^{\prime}, j^{\prime}, k^{\prime}\right) & \Leftarrow \underline{q_{1}}(i, j, k) \wedge i^{\prime}=j \wedge \neg \varphi_{e n d} \\ \perp & \Leftarrow \underline{q_{1}}(i, j, k) \wedge \varphi_{\text {end }} \end{aligned}$	$\underline{q}(i, j, k) \Leftrightarrow$ " for some X and Y, given ($2:: Y, Y, X$) as inputs, the SAR R_{1} visits q reading (i, j, k) as next elements"

Outline

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Applications

- SMT solving on recursive data structures
- Applicable to checking the validity/satisfiability of quantifier-free formulas consisting of predicates belonging to SAR-formulas

Formulas s.t. itself and its negation are of the form $\exists \tilde{X} \exists \tilde{x} . R(\tilde{T}, \tilde{t})$

- CHC solving
- Reduction from CHC solving on data structures to CHC solving on integers
- Applicable to teacher part of ICE-based CHC solver

Outline

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Application to ICE-based CHC solving
- Evaluation
- Related Work

Implementation

- Implemented a satisfiability solver for SAR-formulas

- Input:
- definitions of predicates as SAR-formulas
- quantifier-free formulas

$$
\begin{array}{cl}
\text { e.g.) } n t h(i, x, X) \Rightarrow n t h(i+1, x, y:: X) & \text { // formula whose validity to be checked } \\
n t h(i, x, X) \stackrel{\text { def }}{=} \exists Y . R_{1}(i:: Y, Y, X, x) & \text { // definitions of predicate nth } \\
\neg n t h(i, x, X) \stackrel{\text { def }}{=} \exists Y . R_{2}(i:: Y, Y, X, x) & \text { // and its negation } \\
R_{1}=\cdots, R_{2}=\cdots & \text { // definitions of SARs }
\end{array}
$$

- Backend CHC solvers on integers
- Spacer [Komuravelli+, 2016]
- Holce [Champion+, 2020]
- Eldarica [Hojjat+, 2018]

Evaluation

Benchmark (\#Instances)	IsaPlanner (15)	SAR_SMT (60)	CHC (12)	All (87)
Ours-Spacer	8	43	8	59
Ours-Holce	14	55	11	80
Ours-Eldarica	14	59	12	85
Z3 [Moura+, 2008] (rec)	5	32	1	38
Z3 (assert)	7	20	3	30
CVC4 [Barrett+, 2011] (rec)	5	32	3	40
CVC4 (assert)	6	19	3	28

- Count the number of instances solved within 60 seconds
- Our tool solved more instances for three benchmarks

Outline

- Symbolic Automatic Relations
- (Incomplete) Decision Procedure for Satisfiability Problem for SAR-Formulas
- Applications
- Evaluation
- Related Work

Related Work

- Decidable theories on arrays [Bradley+,2006] or inductive data types [Barrett+,2007]
- Decidable fragments of these theories are limited
- CHC Solver based on Tree Automatic Relations [Haudebourg,2020]
- Does not deal with data structures of elements from an infinite set
- Fold/unfold transformation [Angelis+, 2020]
- Removes algebraic data types from CHCs
- Seems to be related to SARs in some way

Conclusion

- Symbolic automatic relations
- Combination of symbolic automata and automatic relations
- Useful for reasoning about recursive data structures
- (Incomplete) decision procedure for the satisfiability problem for SAR-Formulas
- Reduction to CHC on integers
- Future work
- Learner's algorithm for ICE-based CHC solver

